0=2(x^2+3x-3)

Simple and best practice solution for 0=2(x^2+3x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2(x^2+3x-3) equation:



0=2(x^2+3x-3)
We move all terms to the left:
0-(2(x^2+3x-3))=0
We add all the numbers together, and all the variables
-(2(x^2+3x-3))=0
We calculate terms in parentheses: -(2(x^2+3x-3)), so:
2(x^2+3x-3)
We multiply parentheses
2x^2+6x-6
Back to the equation:
-(2x^2+6x-6)
We get rid of parentheses
-2x^2-6x+6=0
a = -2; b = -6; c = +6;
Δ = b2-4ac
Δ = -62-4·(-2)·6
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{21}}{2*-2}=\frac{6-2\sqrt{21}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{21}}{2*-2}=\frac{6+2\sqrt{21}}{-4} $

See similar equations:

| x-83=221 | | 2(5x+6)=-39+41 | | 5r-8=2r | | 1/42(x-1)+6=x | | 3^g=9^5 | | 2(2x+1)÷3=6 | | 3+y²=11y | | 7y-5/2y=3 | | 5(2q-1)3q=30 | | 5(29-1)-3q=30 | | 3-11y+y²=0 | | −2x2−2x+8=−x+6 | | 35y-10=5(7y-2) | | 3(x-2)+3=5x-2(3+x) | | 3w+6=6+4w | | (14,-14)m=7/8 | | 20x/12x=x | | 11=5+y/2 | | 2/3x+5=x^2-x+3 | | A=6x+40,B=3x+112 | | 2/3x+x=5x | | 4(5-x)+6x=13 | | 63-7m^2=0 | | -2|x+3|=6 | | -5x-(7-4x)=-2(3x+4) | | 3(2-4x)-8=22 | | 12+3x-9=8x3-5x | | 4p-1.3=-6p-15.2 | | Y=0.04x+800 | | (3*6/2)v+10=3v2+9 | | (3*6/2)v+10=3v^2+9 | | -6+16t=-3t |

Equations solver categories